- Home
- Search Results
- Page 1 of 1
Search for: All records
-
Total Resources1
- Resource Type
-
0000000001000000
- More
- Availability
-
10
- Author / Contributor
- Filter by Author / Creator
-
-
Holm, Elizabeth A. (1)
-
Luo, Qixiang (1)
-
Wang, Chen (1)
-
#Tyler Phillips, Kenneth E. (0)
-
#Willis, Ciara (0)
-
& Abreu-Ramos, E. D. (0)
-
& Abramson, C. I. (0)
-
& Abreu-Ramos, E. D. (0)
-
& Adams, S.G. (0)
-
& Ahmed, K. (0)
-
& Ahmed, Khadija. (0)
-
& Aina, D.K. Jr. (0)
-
& Akcil-Okan, O. (0)
-
& Akuom, D. (0)
-
& Aleven, V. (0)
-
& Andrews-Larson, C. (0)
-
& Archibald, J. (0)
-
& Arnett, N. (0)
-
& Arya, G. (0)
-
& Attari, S. Z. (0)
-
- Filter by Editor
-
-
& Spizer, S. M. (0)
-
& . Spizer, S. (0)
-
& Ahn, J. (0)
-
& Bateiha, S. (0)
-
& Bosch, N. (0)
-
& Brennan K. (0)
-
& Brennan, K. (0)
-
& Chen, B. (0)
-
& Chen, Bodong (0)
-
& Drown, S. (0)
-
& Ferretti, F. (0)
-
& Higgins, A. (0)
-
& J. Peters (0)
-
& Kali, Y. (0)
-
& Ruiz-Arias, P.M. (0)
-
& S. Spitzer (0)
-
& Sahin. I. (0)
-
& Spitzer, S. (0)
-
& Spitzer, S.M. (0)
-
(submitted - in Review for IEEE ICASSP-2024) (0)
-
-
Have feedback or suggestions for a way to improve these results?
!
Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
The extensive use of carbon nanomaterials such as carbon nanotubes/nanofibers (CNTs/CNFs) in industrial settings has raised concerns over the potential health risks associated with occupational exposure to these materials. These exposures are commonly in the form of CNT/CNF-containing aerosols, resulting in a need for a reliable structure classification protocol to perform meaningful exposure assessments. However, airborne carbonaceous nanomaterials are very likely to form mixtures of individual nano-sized particles and micron-sized agglomerates with complex structures and irregular shapes, making structure identification and classification extremely difficult. While manual classification from transmission electron microscopy (TEM) images is widely used, it is time-consuming due to the lack of automation tools for structure identification. In the present study, we applied a convolutional neural network (CNN) based machine learning and computer vision method to recognize and classify airborne CNT/CNF particles from TEM images. We introduced a transfer learning approach to represent images by hypercolumn vectors, which were clustered via K -means and processed into a Vector of Locally Aggregated Descriptors (VLAD) representation to train a softmax classifier with the gradient boosting algorithm. This method achieved 90.9% accuracy on the classification of a 4-class dataset and 84.5% accuracy on a more complex 8-class dataset. The developed model established a framework to automatically detect and classify complex carbon nanostructures with potential applications that extend to the automated structural classification for other nanomaterials.more » « less
An official website of the United States government
